
Spirit: Fair Allocation of Interdependent Resources
in Remote Memory Systems

Seung-seob Lee, Jachym Putta, Ziming Mao*, Anurag Khandelwal
Yale University, *UC Berkeley

Local memory

DDR5Core/reg
& cache

Compute server

CPU processor

Remote Memory System

2

Remote memory

Over
network DDR5

DDR5
DDR5

Remote memory enables higher resource utilization
by decoupling memory from CPU allocation

Focus on throughput/latency
FastSwap (EuroSys ’20),

MIND (SOSP ’21), Hermit (NSDI ’23),
Canvas (NSDI ’23), Mage (SOSP ’25), etc.

Slow but largeFast but small

But not on fairness
for shared remote memory

Cache
(for remote memory)

Cache and Bandwidth are Interdependent

Cache capacity ↑

Cache miss rate ↓

Need for bandwidth ↓

Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

Performance

Bandwidth allocation

Same performance

cache = 1

cache = 2

3

Cache and Bandwidth are Interdependent

Cache capacity ↑

Cache miss rate ↓

Need for bandwidth ↓

Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

StreamBench

�
�� �
� 	���
����"�� �������� �������

	��

��

���

���

��
��

 �!
�

�

��

��
���

��
��

��

������������ ���

�������� �
������� 	���������

4

Prior Approaches for
Fair Multi-resource Allocation

🧑💻
4 vCPU and 16 GB of DRAM

per Memcached continer
• Independent resources—E.g., DRF (NSDI’11)

Sharing incentives Envy-freeness

Pareto-optimality

CPU DRAM

Static
share <

CPU DRAM

🤨❌

CPU DRAM

100% used

5

Strategy-proofness

CPU DRAM
⚙

Allocator❌

Prior Schemes are Insufficient
Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

Pe
rfo

rm
an

ce

Bandwidth allocation

cache = 1

cache = 2

Which of these to express?

Demand more resources
for better performance!

Need to express
a specific demand

Hard to know in advance

6

Prior Schemes are Insufficient
Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

Pe
rfo

rm
an

ce

Bandwidth allocation

cache = 1

cache = 2

Application-specific
interdependence!

cache = 1

cache = 2

Pe
rfo

rm
an

ce

Bandwidth allocation

Cache-sensitive Bandwidth-sensitive

Demand more resources! Demand more resources!

: Static partitioning

7

Key Ideas: Trading for Mutual Benefit
Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

Pe
rfo

rm
an

ce

Bandwidth allocation

cache = 1

cache = 2

Application-specific
interdependence!

cache = 1

cache = 2

Pe
rfo

rm
an

ce

Bandwidth allocation

Cache-sensitive Bandwidth-sensitive

bandwidth

cache
: After trade
: Static partitioning

8

Key Ideas: Trading for Mutual Benefit
Remote memory

DDR5Core/reg
& cache

Over
network

Compute server

DDR5
DDR5

DDR5

Interdependent!

Pe
rfo

rm
an

ce

Bandwidth allocation

cache = 1

cache = 2

Application-specific
interdependence!

cache = 1

cache = 2

Pe
rfo

rm
an

ce

Bandwidth allocation

Cache-sensitive Bandwidth-sensitive

bandwidth

cache
: After trade
: Static partitioning

Resource-based fairness

• Cannot expess a specific demand
• More resources for better performance

Performance-based fairness

• Same performance → fair
(even under different resouce amounts)

*Similar to utility-based fairness in Zahedi & Lee, REF (ASPLOS ’14)

9

Symbiosis Algorithm

💰 Cache Bw
Market

10

💵 💵
price

amount

💵💵💵

💵💵

Symbiosis Algorithm

Most performant allocation
within the budget

E.g., cache demand > supply

No

Yes END

🤔

Check if total
demand ≤ supply

Cache Bw
Market

Price adjustment

11

💰 💰 💰

Equal budget and price

→ increase cache price, decrease bandwidth price

💰 💰 💰

Equal budget and price

Symbiosis Algorithm

Most performant allocation
within the budget

E.g., cache demand > supply

No

Yes END

🤔

Check if total
demand ≤ supply

Cache Bw
Market

Price adjustment

12

→ increase cache price, decrease bandwidth price

Sharing incentives Envy-freeness Pareto-optimality

Cache Bw

Static
share Performance

<
Cache Bw

🤨❌

Cache Bw

100% used

💰 💰 💰

Equal budget and price

Symbiosis Algorithm

Most performant allocation
within the budget

E.g., cache demand > supply

No

Yes END

🤔

Check if total
demand ≤ supply

Cache Bw
Market

Price adjustment

How to know
app’s resource

interdependence?

13

→ increase cache price, decrease bandwidth price

Can users report
wrong information?

Spirit Design

Runtime monitoring

Existing
performance
counters

Performance estimation

Across (cache, bandwidth) pairs

DDR5Core/reg
& cache

DDR5

DDR5

Spirit Data Plane Resource Allocator

Trading resources across apps

👍 👍

Resource enforcement

14

Spirit Design

Runtime monitoring

Existing
performance
counters

Performance estimation

Across (cache, bandwidth) pairs

DDR5Core/reg
& cache

DDR5

DDR5

Spirit Data Plane Resource Allocator

Trading resources across apps

👍 👍

Resource enforcement

• Runtime noise & dynamics
• Instability of measured performance
• Resource enforcement w/o OS modifications
• Estimation overhead & more

→ see our paper for details!

15

Performance Evaluation
Evaluation setup

Modeling AWS EC2 instance (m5a.8xlarge), Linux v6.13
• 32 vCPU, 128 GB memory, and 7.5 Gbps bandwidth

• 10 to 20 GB as local memory (among 128 GB)

16

*Chen et al., PARTIES, ASPLOS ’19

Compared schemes
• Baseline: static allocation

 (~prior schemes under interdependence)
• Harvest: harvest from the most performant

and reassign to the least* (No fairness)

• Ideal: hand-picked best solution

Diverse applications & sensitivity
• STREAM : sensitive to cache & bw

• Memcached : sensitive to cache

• SocialNetwork : sensitive to cache

• DLRM (omitted) : compute-intensive

Performance Evaluation
Spirit improves throughput and latency, providing fairness (10 GB of $)

• End-to-end performance improves up to 21.6%,
preserving fairness across applications

• Spirit reduces P99 latency by up to 16.8%

��������
��	
���
	
��
�	

�

		

��
��
��
��
��
��
��
!

��
���
�
��
���
��
��
��
��

������
��	
�
	
	

	
�	

�!����

�	�

�

	�

�

��

��
�
�
��
�
�
�
�
�
�

��
�
�
�
"
�
�
�
�
!
�
�
�

��!�����

���

���

�
�

�	�

�

	�

�

������

�	�

�

	�

�

���"� ! ����� �����!

Spirit’s trading enables
mutual benefits for everyone

17

Conclusion
Summary and future directions

Available at https://github.com/yale-nova/spirit

Spirit addresses resource
interdependence Decoupled design

Other resource-interdependency

Fair resource allocation
for remote memory systems

🤩 🤩 🤩

Mutual benefits for everyone

Monitoring &
enforcementAllocation

Pe
rfo

rm
an

ce

Cache allocation

Monitoring

Estimation

18

https://github.com/yale-nova/spirit

